REDUCTION OF ALDEHYDES AND KETONES WITH Cp2Zr(C1)BH

Thomas N. Sorrell

Department of Chemistry, University of North Carolina, Chapel Hill, NC 27514

The use of covalent transition metal tetrahydroborate complexes¹ as stoichiometric reducing agents in organic chemistry has been proposed recently², however, the only reported example of such a reagent is $(Ph_3P)_2CuBH_4$ which converts acid chlorides to aldehydes in high yields under mild conditions.²,³ The possibility that a lanthanide tetrahydroborate complex is instrumental in the reduction of α , β -unsaturated ketones to allylic alcohols has also been noted⁴, but that case is not well defined. The present report deals with the reactions of bis(cyclopentadienyl) chlorotetrahydroborato zirconium(IV)⁵, Cp₂Zr(Cl)BH₄, which promises to be the prototype for an entire series of stoichiometric reducing agents.

The zirconium tetrahydroborate complex, 1, is conveniently prepared by the addition of one equivalent of borane-methyl sulfide to a stirred suspension of $Cp_2Zr(H)Cl^6$ followed by precipitation and recrystallization to give a free-flowing white powder in 70-80% yield. As a reagent, 1 has been found to reduce aldehydes and ketones to alcohols in benzene solution at 25° (equation 1). The reactions are generally complete within a few minutes, and isolated yields are often high (Table 1).⁷

$$C = O \xrightarrow{1} C_{2} \xrightarrow{1} C_{2} \xrightarrow{1} C_{1} \xrightarrow{1} C_{6} \xrightarrow{1$$

A comparison of $Cp_2Zr(Cl)BH_4$ with conventional boron and aluminum hydride reducing agents demonstrates the potential utility of 1. First, it is more selective than many hydridic reagents such as LiAlH₄ and its derivatives⁸, borane⁸, and the trialkylborohydrides.⁹ Thus, carboxylic acids, esters, nitriles, and nitro compounds react very slowly with 1 allowing selective reduction of aldehyde and ketone carbonyl groups.¹⁰ Second, since its reactivity is similar to sodium borohydride, $Cp_2Zr(Cl)BH_4$ may be used to carry out reductions of non-polar substrates which are insoluble in the alcoholic media generally used with NaBH₄. Finally, its use does not require an inert atmosphere as many simpler alane and borane derivatives do.

Unfortunately, certain aspects of the regio- and stereoselectivity of 1 are disappointing.¹¹ For example, α , β -unsaturated ketones are reduced in poor yield, giving both the saturated and unsaturated alcohols (Table 1). Also, little stereoselectivity is observed in the reduction of 4-<u>t</u>-butylcyclohexanone. Hopefully, these shortcomings can be remedied by derivatives of 1, and work toward this goal is in progress.

Starting Material	Product	Yield ^a
nonanal	nonanol	90
4-chlorobenzaldehyde	4-chlorobenzyl alcohol	96
4-nitrobenzaldehyde	4-nitrobenzyl alcohol	1 00
cinnamaldehyde	cinnamyl alcohol	49 ^b
acetophenone	l-phenylethanol	98
4- <u>t</u> -butylcyclohexanone	4-t-butylcyclohexanol	90 ^c
2-cyclohexenone	2-cyclohexenol	18 ^d
	cyclohexanol	18

Table 1

a) Yields are for isolated, distilled products (reference 7). b) No reduction of the C=C bond was observed; 28% yield of polymer was obtained. c) A 2:1 mixture of the trans and cis compounds was obtained. d) 34% yield of polymer was obtained.

<u>Acknowledgments</u>. Acknowledgment is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the University Research Council of UNC for support of this research.

REFERENCES AND NOTES

- 1. T. J. Marks and J. R. Kolb, Chem. Rev., 77, 263 (1977).
- 2. T. N. Sorrell and R. J. Spillane, Tetrahedron Lett., 2473 (1978).
- 3. G. W. J. Fleet, C. J. Fuller, and P. J. C. Harding, Tetrahedron Lett., 1437 (1978).
- 4. J.-L. Luche, J. Am. Chem. Soc., 100, 2226 (1978).
- This compound has been reported previously; however, no detail for either its preparation or characterization was presented. R. K. Nanda and M. G. H. Wallbridge, <u>Inorg. Chem</u>., 3, 1978 (1964)
- 6. Cp₂Zr(H)Cl (Schwartz's reagent) is commercially available from the Ventron Corporation, Alfa Division. Its preparation has been described: D. W. Hart and J. Schwartz, <u>J. Am. Chem. Soc.</u>, 96, 8115 (1974). Detailed procedures for the preparation of <u>1</u> and of other metal tetrahydroborate complexes via the metal hydride-borane route will be described in a forthcoming paper.
- 7. Isolated compounds had proton nmr spectra identical to authentic samples and were generally >97% pure by glc or tlc analysis. The preparation of 1-phenylethanol is representative: to a stirred solution of 166.2 mg of acetophenone in 2 mL of benzene was added, in one portion, 400.6 mg of 1. After 13 min (the reaction was monitored by glc), 1 mL of 5% hydrochloric acid and 20 mL of saturated NaCl were added and the solution extracted with three 10-mL portions of ether. The ether extracts were dried over MgSO_A and then filtered through a short column (2.5 x 9 cm) of 60-200 mesh silica. The silica was washed with 200 mL of chloroform and the combined organic portion evaporated to give an oil. Bulb-to-bulb distillation at reduced pressure gave 165.2 mg (98%) of 1-phenylethanol.
- 8. H. O. House, "Modern Synthetic Reactions", W. A. Benjamin, Inc., Reading, 1972, pp 45-144.
- 9. S. Krishnamurthy, <u>Aldrichimica Acta</u>, 7, 55 (1974).
- Carboxylic acid chlorides are reduced slowly to alcohols (after hydrolysis) although the yields are poor.
- 11. A puzzling feature of these reactions is the formation of adducts of 1 with compounds which are not easily reduced. Thus, the concentration of a benzene solution of ethyl benzoate decreases with time upon addition of 1 (monitored by glc). However, after hydrolysis of the mixture with dilute acid, 90-95% of the starting ester is observed once again. The nature of these adducts is under investigation.

(Received in USA 18 October 1978)